Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nature ; 602(7896): 307-313, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585832

ABSTRACT

Emerging variants of concern (VOCs) are driving the COVID-19 pandemic1,2. Experimental assessments of replication and transmission of major VOCs and progenitors are needed to understand the mechanisms of replication and transmission of VOCs3. Here we show that the spike protein (S) from Alpha (also known as B.1.1.7) and Beta (B.1.351) VOCs had a greater affinity towards the human angiotensin-converting enzyme 2 (ACE2) receptor than that of the progenitor variant S(D614G) in vitro. Progenitor variant virus expressing S(D614G) (wt-S614G) and the Alpha variant showed similar replication kinetics in human nasal airway epithelial cultures, whereas the Beta variant was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over wt-S614G in ferrets and two mouse models-the substitutions in S were major drivers of the fitness advantage. In hamsters, which support high viral replication levels, Alpha and wt-S614G showed similar fitness. By contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and in mice expressing human ACE2. Our study highlights the importance of using multiple models to characterize fitness of VOCs and demonstrates that Alpha is adapted for replication in the upper respiratory tract and shows enhanced transmission in vivo in restrictive models, whereas Beta does not overcome Alpha or wt-S614G in naive animals.


Subject(s)
COVID-19/transmission , COVID-19/virology , Mutation , SARS-CoV-2/classification , SARS-CoV-2/physiology , Virus Replication , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Animals, Laboratory/virology , COVID-19/veterinary , Cricetinae , Disease Models, Animal , Epithelial Cells/virology , Female , Ferrets/virology , Humans , Male , Mesocricetus/virology , Mice , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence/genetics
2.
Virulence ; 12(1): 2777-2786, 2021 12.
Article in English | MEDLINE | ID: covidwho-1565872

ABSTRACT

Several animal species, including ferrets, hamsters, monkeys, and raccoon dogs, have been shown to be susceptible to experimental infection by the human severe acute respiratory syndrome coronaviruses, such as SARS-CoV and SARS-CoV-2, which were responsible for the 2003 SARS outbreak and the 2019 coronavirus disease (COVID-19) pandemic, respectively. Emerging studies have shown that SARS-CoV-2 natural infection of pet dogs and cats is also possible, but its prevalence is not fully understood. Experimentally, it has been demonstrated that SARS-CoV-2 replicates more efficiently in cats than in dogs and that cats can transmit the virus through aerosols. With approximately 470 million pet dogs and 370 million pet cats cohabitating with their human owners worldwide, the finding of natural SARS-CoV-2 infection in these household pets has important implications for potential zoonotic transmission events during the COVID-19 pandemic as well as future SARS-related outbreaks. Here, we describe some of the ongoing worldwide surveillance efforts to assess the prevalence of SARS-CoV-2 exposure in companion, captive, wild, and farmed animals, as well as provide some perspectives on these efforts including the intra- and inter-species coronavirus transmissions, evolution, and their implications on the human-animal interface along with public health. Some ongoing efforts to develop and implement a new COVID-19 vaccine for animals are also discussed. Surveillance initiatives to track SARS-CoV-2 exposures in animals are necessary to accurately determine their impact on veterinary and human health, as well as define potential reservoir sources of the virus and its evolutionary and transmission dynamics.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals, Zoo/virology , COVID-19/veterinary , Pets/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines , Disease Reservoirs/statistics & numerical data , Disease Reservoirs/virology , Ferrets/virology , Humans , Prevalence , Viral Zoonoses/epidemiology , Viral Zoonoses/prevention & control , Viral Zoonoses/virology
3.
Front Immunol ; 12: 750229, 2021.
Article in English | MEDLINE | ID: covidwho-1506957

ABSTRACT

Improving COVID-19 intervention strategies partly relies on animal models to study SARS-CoV-2 disease and immunity. In our pursuit to establish a model for severe COVID-19, we inoculated young and adult male ferrets intranasally or intratracheally with SARS-CoV-2. Intranasal inoculation established an infection in all ferrets, with viral dissemination into the brain and gut. Upon intratracheal inoculation only adult ferrets became infected. However, neither inoculation route induced observable COVID-19 symptoms. Despite this, a persistent inflammation in the nasal turbinates was prominent in especially young ferrets and follicular hyperplasia in the bronchi developed 21 days post infection. These effects -if sustained- might resemble long-COVID. Respiratory and systemic cellular responses and antibody responses were induced only in animals with an established infection. We conclude that intranasally-infected ferrets resemble asymptomatic COVID-19 and possibly aspects of long-COVID. Combined with the increasing portfolio to measure adaptive immunity, ferrets are a relevant model for SARS-CoV-2 vaccine research.


Subject(s)
Bronchi/pathology , COVID-19/complications , COVID-19/immunology , Ferrets/immunology , SARS-CoV-2/physiology , Administration, Intranasal , Age Factors , Animals , Asymptomatic Diseases , Disease Models, Animal , Ferrets/virology , Humans , Hyperplasia , Immunity, Cellular , Immunity, Humoral , Injection, Intratympanic , Male , Virus Internalization , Post-Acute COVID-19 Syndrome
4.
J Virol ; 95(14): e0011121, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1358015

ABSTRACT

The current fears of a future influenza pandemic have resulted in an increased emphasis on the development and testing of novel therapeutic strategies against the virus. Fundamental to this is the ferret model of influenza infection, which is critical in examining pathogenesis and treatment. Nevertheless, a precise evaluation of the efficacy of any treatment strategy in ferrets is reliant on understanding the immune response in this model. Interferon-inducible transmembrane proteins (IFITMs) are interferon-stimulated proteins shown to be critically important in the host immune response against viral infections. These proteins confer intrinsic innate immunity to pH-dependent viruses such as influenza viruses and can inhibit cytosolic entry of such viruses to limit the severity of infection following interferon upregulation. Mutations in IFITM genes in humans have been identified as key risk factors for worsened disease progression, particularly in the case of avian influenza viruses such as H7N9. While the IFITM genes of humans and mice have been well characterized, no studies have been conducted to classify the IFITM locus and interferon-driven upregulation of IFITMs in ferrets. Here, we show the architecture of the ferret IFITM locus and its synteny to the IFITM locus of other mammalian and avian species. Furthermore, we show that ferret IFITM1, -2, and -3 are functionally responsive to both interferon-α (IFN-α) and influenza virus stimulation. Thus, we show that ferret IFITMs exhibit interferon-stimulated properties similar to those shown in other species, furthering our knowledge of the innate immune response in the ferret model of human influenza virus infections. IMPORTANCE IFITM proteins can prevent the entry of several pH-dependent viruses, including high-consequence viruses such as HIV, influenza viruses, and SARS-coronaviruses. Mutations in these genes have been associated with worsened disease outcomes with mutations in their IFITM genes, highlighting these genes as potential disease risk factors. Ferrets provide a valuable tool to model infectious diseases; however, there is a critical shortage of information regarding their interferon-stimulated genes. We identified the putative ferret IFITM genes and mapped their complete gene locus. Thus, our study fills a critical gap in knowledge and supports the further use of the ferret model to explore the importance of IFITMs in these important diseases.


Subject(s)
Ferrets , Influenza A Virus, H1N1 Subtype , Interferon-alpha/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Orthomyxoviridae Infections/immunology , Animals , Cell Line , Conserved Sequence , Disease Models, Animal , Ferrets/immunology , Ferrets/metabolism , Ferrets/virology , Humans , Models, Molecular , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/metabolism , Polymerase Chain Reaction , Sequence Analysis, Protein , Up-Regulation
5.
Viruses ; 13(4)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1208346

ABSTRACT

Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.


Subject(s)
Ferrets/virology , Immunity , Orthomyxoviridae Infections/virology , Age Factors , Animals , Female , Humans , Influenza Vaccines , Pregnancy , Risk Factors , Vaccination
6.
Sci Rep ; 11(1): 14536, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315609

ABSTRACT

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) hospitalizations and deaths disportionally affect males and older ages. Here we investigated the impact of male sex and age comparing sex-matched or age-matched ferrets infected with SARS-CoV-2. Differences in temperature regulation was identified for male ferrets which was accompanied by prolonged viral replication in the upper respiratory tract after infection. Gene expression analysis of the nasal turbinates indicated that 1-year-old female ferrets had significant increases in interferon response genes post infection which were delayed in males. These results provide insight into COVID-19 and suggests that older males may play a role in viral transmission due to decreased antiviral responses.


Subject(s)
COVID-19/virology , Ferrets/virology , Interferons/metabolism , Age Factors , Animals , Antibodies, Viral , COVID-19/metabolism , Disease Models, Animal , Female , Ferrets/metabolism , Host Microbial Interactions , Interferons/genetics , Male , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sex Factors , Viral Load , Virus Replication
7.
Mol Cells ; 44(6): 377-383, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1289259

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a novel virus that causes coronavirus disease 2019 (COVID-19). To understand the identity, functional characteristics and therapeutic targets of the virus and the diseases, appropriate infection models that recapitulate the in vivo pathophysiology of the viral infection are necessary. This article reviews the various infection models, including Vero cells, human cell lines, organoids, and animal models, and discusses their advantages and disadvantages. This knowledge will be helpful for establishing an efficient system for defense against emerging infectious diseases.


Subject(s)
COVID-19/virology , Models, Theoretical , Organoids/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/immunology , COVID-19/pathology , Cats , Cell Line, Tumor , Chickens/virology , Chlorocebus aethiops/virology , Cricetinae , Dogs , Ferrets/virology , Humans , Mice , Organoids/immunology , Organoids/pathology , Rabbits , SARS-CoV-2/growth & development , Swine/virology , Vero Cells
8.
Viruses ; 13(6)2021 06 16.
Article in English | MEDLINE | ID: covidwho-1273517

ABSTRACT

Pets play a crucial role in the development of human feelings, social life, and care. However, in the era of the prevailing global pandemic of COVID-19 disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many questions addressing the routes of the virus spread and transmission to humans are dramatically emerging. Although cases of SARS-CoV-2 infection have been found in pets including dogs, cats, and ferrets, to date there is no strong evidence for pet-to-human transmission or sustained pet-to-pet transmission of SARS-CoV-2. However, an increasing number of studies reporting detection of SARS-CoV-2 in farmed minks raises suspicion of potential viral transmission from these animals to humans. Furthermore, due to the high susceptibility of cats, ferrets, minks and hamsters to COVID-19 infection under natural and/or experimental conditions, these animals have been extensively explored as animal models to study the SARS-CoV-2 pathogenesis and transmission. In this review, we present the latest reports focusing on SARS-CoV-2 detection, isolation, and characterization in pets. Moreover, based on the current literature, we document studies aiming to broaden the knowledge about pathogenicity and transmissibility of SARS-CoV-2, and the development of viral therapeutics, drugs and vaccines. Lastly, considering the high rate of SARS-CoV-2 evolution and replication, we also suggest routes of protection against the virus.


Subject(s)
COVID-19/transmission , Pets/virology , SARS-CoV-2/pathogenicity , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/prevention & control , Cats/virology , Dogs/virology , Farms , Ferrets/virology , Humans , Mink/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
10.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1189343

ABSTRACT

Ferrets (Mustela putorius furo) are mustelids of special relevance to laboratory studies of respiratory viruses and have been shown to be susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and onward transmission. Here, we report the results of a natural experiment where 29 ferrets in one home had prolonged, direct contact and constant environmental exposure to two humans with symptomatic disease, one of whom was confirmed positive for SARS-CoV-2. We observed no evidence of SARS-CoV-2 transmission from humans to ferrets based on viral and antibody assays. To better understand this discrepancy in experimental and natural infection in ferrets, we compared SARS-CoV-2 sequences from natural and experimental mustelid infections and identified two surface glycoprotein Spike (S) mutations associated with mustelids. While we found evidence that angiotensin-converting enzyme II provides a weak host barrier, one mutation only seen in ferrets is located in the novel S1/S2 cleavage site and is computationally predicted to decrease furin cleavage efficiency. These data support the idea that host factors interacting with the novel S1/S2 cleavage site may be a barrier in ferret SARS-CoV-2 susceptibility and that domestic ferrets are at low risk of natural infection from currently circulating SARS-CoV-2. We propose two mechanistically grounded hypotheses for mustelid host adaptation of SARS-CoV-2, with possible effects that require additional investigation.


Subject(s)
COVID-19/transmission , Ferrets/virology , Host Adaptation , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , Disease Susceptibility , Humans
11.
Viruses ; 13(3)2021 03 23.
Article in English | MEDLINE | ID: covidwho-1154524

ABSTRACT

The visualization of viral pathogens in infected tissues is an invaluable tool to understand spatial virus distribution, localization, and cell tropism in vivo. Commonly, virus-infected tissues are analyzed using conventional immunohistochemistry in paraffin-embedded thin sections. Here, we demonstrate the utility of volumetric three-dimensional (3D) immunofluorescence imaging using tissue optical clearing and light sheet microscopy to investigate host-pathogen interactions of pandemic SARS-CoV-2 in ferrets at a mesoscopic scale. The superior spatial context of large, intact samples (>150 mm3) allowed detailed quantification of interrelated parameters like focus-to-focus distance or SARS-CoV-2-infected area, facilitating an in-depth description of SARS-CoV-2 infection foci. Accordingly, we could confirm a preferential infection of the ferret upper respiratory tract by SARS-CoV-2 and suggest clustering of infection foci in close proximity. Conclusively, we present a proof-of-concept study for investigating critically important respiratory pathogens in their spatial tissue morphology and demonstrate the first specific 3D visualization of SARS-CoV-2 infection.


Subject(s)
COVID-19/virology , Ferrets , Microscopy/methods , Respiratory System/virology , SARS-CoV-2/physiology , Animals , Disease Models, Animal , Ferrets/virology , Humans , Respiratory System/anatomy & histology , SARS-CoV-2/genetics
12.
Nat Commun ; 12(1): 1653, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1132073

ABSTRACT

SARS-CoV-2 emerged in late 2019 and caused a pandemic, whereas the closely related SARS-CoV was contained rapidly in 2003. Here, an experimental set-up is used to study transmission of SARS-CoV and SARS-CoV-2 through the air between ferrets over more than a meter distance. Both viruses cause a robust productive respiratory tract infection resulting in transmission of SARS-CoV-2 to two of four indirect recipient ferrets and SARS-CoV to all four. A control pandemic A/H1N1 influenza virus also transmits efficiently. Serological assays confirm all virus transmission events. Although the experiments do not discriminate between transmission via small aerosols, large droplets and fomites, these results demonstrate that SARS-CoV and SARS-CoV-2 can remain infectious while traveling through the air. Efficient virus transmission between ferrets is in agreement with frequent SARS-CoV-2 outbreaks in mink farms. Although the evidence for virus transmission via the air between humans under natural conditions is absent or weak for SARS-CoV and SARS-CoV-2, ferrets may represent a sensitive model to study interventions aimed at preventing virus transmission.


Subject(s)
Air Microbiology , COVID-19/transmission , Ferrets/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/transmission , Severe acute respiratory syndrome-related coronavirus , Aerosols , Amino Acid Substitution , Animal Fur/virology , Animals , COVID-19/virology , Disease Models, Animal , Female , Fomites/virology , Influenza A Virus, H1N1 Subtype , Models, Biological , Orthomyxoviridae Infections/transmission , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Severe Acute Respiratory Syndrome/virology , Time Factors , Viral Load , Viral Zoonoses/transmission , Viral Zoonoses/virology , Virus Shedding
13.
Nature ; 592(7852): 122-127, 2021 04.
Article in English | MEDLINE | ID: covidwho-1104508

ABSTRACT

During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.


Subject(s)
COVID-19/transmission , COVID-19/virology , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Virus Replication/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Bronchi/cytology , Bronchi/virology , COVID-19/epidemiology , Cell Line , Cells, Cultured , Cricetinae , Disease Models, Animal , Epithelial Cells/virology , Female , Ferrets/virology , Founder Effect , Gene Knock-In Techniques , Genetic Fitness , Humans , Male , Mesocricetus , Mice , Nasal Mucosa/cytology , Nasal Mucosa/virology , Protein Binding , RNA, Viral/analysis , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
14.
MEDICC Rev ; 22(4): 81-82, 2020 10.
Article in English | MEDLINE | ID: covidwho-1008394

ABSTRACT

Despite fast-tracked research, the precise origin, transmission and evolution of COVID-19 are still unknown. While the bat genus Rhinolophus is likely the primary source of the zoonotic-origin pathogen SARS-CoV-2 that causes COVID-19, its transmission route into the human population is still being studied.[1,2] Coronaviruses (CoV) affect humans and various animal species. Bats were the original hosts of the CoV that causes Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), for example, with masked palm civet cats and dromedaries, respectively, the intermediate hosts of those two viruses. Research is ongoing regarding intermediate species for SARS-CoV-2, but one possibility is the large stray cat and dog population around the live animal market in Wuhan, China, where the pandemic is thought to have started.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals , Camelus/virology , Cats/virology , Chiroptera/virology , Dogs/virology , Ferrets/virology , Humans , Mink/virology , Viverridae/virology
15.
MEDICC Rev ; 22(4): 81-82, 2020 10.
Article in English | MEDLINE | ID: covidwho-958634

ABSTRACT

Despite fast-tracked research, the precise origin, transmission and evolution of COVID-19 are still unknown. While the bat genus Rhinolophus is likely the primary source of the zoonotic-origin pathogen SARS-CoV-2 that causes COVID-19, its transmission route into the human population is still being studied.[1,2] Coronaviruses (CoV) affect humans and various animal species. Bats were the original hosts of the CoV that causes Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), for example, with masked palm civet cats and dromedaries, respectively, the intermediate hosts of those two viruses. Research is ongoing regarding intermediate species for SARS-CoV-2, but one possibility is the large stray cat and dog population around the live animal market in Wuhan, China, where the pandemic is thought to have started.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals , Camelus/virology , Cats/virology , Chiroptera/virology , Dogs/virology , Ferrets/virology , Humans , Mink/virology , Viverridae/virology
16.
Nature ; 586(7830): 509-515, 2020 10.
Article in English | MEDLINE | ID: covidwho-792975

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Ferrets/virology , Humans , Mesocricetus/virology , Mice , Pneumonia, Viral/immunology , Primates/virology , SARS-CoV-2 , Viral Vaccines/immunology
17.
Vet Res Commun ; 44(3-4): 119-130, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-756542

ABSTRACT

Coronaviruses are a large family of viruses that are known to infect both humans and animals. However, the evidence of inter-transmission of coronavirus between humans and companion animals is still a debatable issue. There is substantial evidence that the virus outbreak is fueled by zoonotic transmission because this new virus belongs to the same family of viruses as SARS-CoV associated with civet cats, and MERS-CoV associated with dromedary camels. While the whole world is investigating the possibility about the transmission of this virus, the transmission among humans is established, but the interface between humans and animals is not much evident. Not only are the lives of human beings at risk, but there is an equal potential threat to the animal world. With multiple reports claiming about much possibility of transmission of COVID-19 from humans to animals, there has been a significant increase in the number of pets being abandoned by their owners. Additionally, the risk of reverse transmission of COVID-19 virus from companion pets like cats and dogs at home is yet another area of concern. The present article highlights different evidence of human-animal interface and necessitates the precautionary measures required to combat with the consequences of this interface. The Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) have suggested various ways to promote awareness and corroborate practices for helping people as well as animals to stay secure and healthy.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Zoonoses/transmission , Animals , Betacoronavirus/pathogenicity , COVID-19 , Cats/virology , Coronavirus Infections/veterinary , Dogs/virology , Ferrets/virology , Humans , Pandemics/veterinary , Pneumonia, Viral/veterinary , Poultry/virology , SARS-CoV-2 , Swine/virology , Zoonoses/virology
18.
Vet Microbiol ; 247: 108777, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-733593

ABSTRACT

Coronaviruses (CoVs) cause disease in a range of agricultural and companion animal species, and can be important causes of zoonotic infections. In humans, several coronaviruses circulate seasonally. Recently, a novel zoonotic CoV named SARS-CoV-2 emerged from a bat reservoir, resulting in the COVID-19 pandemic. With a focus on felines, we review here the evidence for SARS-CoV-2 infection in cats, ferrets and dogs, describe the relationship between SARS-CoV-2 and the natural coronaviruses known to infect these species, and provide a rationale for the relative susceptibility of these species to SARS-CoV-2 through comparative analysis of the ACE-2 receptor.


Subject(s)
Cat Diseases/virology , Coronavirus Infections/veterinary , Dog Diseases/virology , Evolution, Molecular , Pandemics/veterinary , Pneumonia, Viral/veterinary , Zoonoses/transmission , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , COVID-19 , Cats/virology , Dogs/virology , Ferrets/virology , Humans , Peptidyl-Dipeptidase A/metabolism , Receptors, Coronavirus , Receptors, Virus/genetics , SARS-CoV-2 , Zoonoses/virology
19.
Open Vet J ; 10(2): 164-177, 2020 08.
Article in English | MEDLINE | ID: covidwho-724486

ABSTRACT

Viruses are having great time as they seem to have bogged humans down. Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and novel coronavirus (COVID-19) are the three major coronaviruses of present-day global human and animal health concern. COVID-19 caused by SARS-CoV-2 is identified as the newest disease, presumably of bat origin. Different theories on the evolution of viruses are in circulation, yet there is no denying the fact that the animal source is the skeleton. The whole world is witnessing the terror of the COVID-19 pandemic that is following the same path of SARS and MERS, and seems to be more severe. In addition to humans, several species of animals are reported to have been infected with these life-threatening viruses. The possible routes of transmission and their zoonotic potentialities are the subjects of intense research. This review article aims to overview the link of all these three deadly coronaviruses among animals along with their phylogenic evolution and cross-species transmission. This is essential since animals as pets or food are said to pose some risk, and their better understanding is a must in order to prepare a possible plan for future havoc in both human and animal health. Although COVID-19 is causing a human health hazard globally, its reporting in animals are limited compared to SARS and MERS. Non-human primates and carnivores are most susceptible to SARS-coronavirus and SARS-CoV-2, respectively, whereas the dromedary camel is susceptible to MERS-coronavirus. Phylogenetically, the trio viruses are reported to have originated from bats and have special capacity to undergo mutation and genomic recombination in order to infect humans through its reservoir or replication host. However, it is difficult to analyze how the genomic pattern of coronaviruses occurs. Thus, increased possibility of new virus-variants infecting humans and animals in the upcoming days seems to be the biggest challenge for the future of the world. One health approach is portrayed as our best way ahead, and understanding the animal dimension will go a long way in formulating such preparedness plans.


Subject(s)
Betacoronavirus/classification , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/classification , Pandemics/veterinary , Pneumonia, Viral/veterinary , Severe Acute Respiratory Syndrome/veterinary , Severe acute respiratory syndrome-related coronavirus/classification , Animals , Animals, Wild , Betacoronavirus/genetics , COVID-19 , Camelids, New World/virology , Camelus/virology , Cats , Chiroptera/virology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Disease Susceptibility/veterinary , Dogs , Eutheria/virology , Ferrets/virology , Humans , Lions/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , Primates/virology , Raccoon Dogs/virology , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/transmission , Snakes/virology , Tigers/virology , Viverridae/virology
SELECTION OF CITATIONS
SEARCH DETAIL